MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. SAE-AISI 1084 Steel

2095 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
11
Fatigue Strength, MPa 200
320 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 410
470 to 550
Tensile Strength: Ultimate (UTS), MPa 700
780 to 930
Tensile Strength: Yield (Proof), MPa 610
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1470
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 65
28 to 33
Strength to Weight: Bending, points 59
24 to 27
Thermal Diffusivity, mm2/s 49
14
Thermal Shock Resistance, points 31
25 to 30

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0.8 to 0.93
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
98.1 to 98.6
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0