MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. SAE-AISI L2 Steel

2095 aluminum belongs to the aluminum alloys classification, while SAE-AISI L2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is SAE-AISI L2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 700
590 to 1960

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.9
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 1470
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 65
21 to 70
Strength to Weight: Bending, points 59
20 to 45
Thermal Diffusivity, mm2/s 49
12
Thermal Shock Resistance, points 31
19 to 65

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0.45 to 1.0
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 3.9 to 4.6
0 to 0.25
Iron (Fe), % 0 to 0.15
95.5 to 98.7
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.1 to 0.9
Molybdenum (Mo), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0