MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C71520 Copper-nickel

2095 aluminum belongs to the aluminum alloys classification, while C71520 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 8.5
10 to 45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
51
Shear Strength, MPa 410
250 to 340
Tensile Strength: Ultimate (UTS), MPa 700
370 to 570
Tensile Strength: Yield (Proof), MPa 610
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 210
260
Melting Completion (Liquidus), °C 660
1170
Melting Onset (Solidus), °C 540
1120
Specific Heat Capacity, J/kg-K 910
400
Thermal Conductivity, W/m-K 130
32
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
40
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.6
5.0
Embodied Energy, MJ/kg 160
73
Embodied Water, L/kg 1470
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
67 to 680
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 65
12 to 18
Strength to Weight: Bending, points 59
13 to 17
Thermal Diffusivity, mm2/s 49
8.9
Thermal Shock Resistance, points 31
12 to 19

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 3.9 to 4.6
65 to 71.6
Iron (Fe), % 0 to 0.15
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
28 to 33
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.5