MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C81400 Copper

2095 aluminum belongs to the aluminum alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 8.5
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 700
370
Tensile Strength: Yield (Proof), MPa 610
250

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 660
1090
Melting Onset (Solidus), °C 540
1070
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
60
Electrical Conductivity: Equal Weight (Specific), % IACS 110
61

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1470
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
36
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 65
11
Strength to Weight: Bending, points 59
13
Thermal Diffusivity, mm2/s 49
75
Thermal Shock Resistance, points 31
13

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 3.9 to 4.6
98.4 to 99.38
Iron (Fe), % 0 to 0.15
0
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.5