MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C83300 Brass

2095 aluminum belongs to the aluminum alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 8.5
35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 700
220
Tensile Strength: Yield (Proof), MPa 610
69

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
1060
Melting Onset (Solidus), °C 540
1030
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
33

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1470
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
60
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
21
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 65
6.9
Strength to Weight: Bending, points 59
9.2
Thermal Diffusivity, mm2/s 49
48
Thermal Shock Resistance, points 31
7.9

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Copper (Cu), % 3.9 to 4.6
92 to 94
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0
1.0 to 2.0
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
2.0 to 6.0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.7