MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C85900 Brass

2095 aluminum belongs to the aluminum alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 8.5
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 700
460
Tensile Strength: Yield (Proof), MPa 610
190

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 210
130
Melting Completion (Liquidus), °C 660
830
Melting Onset (Solidus), °C 540
790
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
89
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
28

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.6
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1470
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 65
16
Strength to Weight: Bending, points 59
17
Thermal Diffusivity, mm2/s 49
29
Thermal Shock Resistance, points 31
16

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Copper (Cu), % 3.9 to 4.6
58 to 62
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.12
0 to 0.25
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
31 to 41
Zirconium (Zr), % 0.040 to 0.18
0 to 0.2
Residuals, % 0
0 to 0.7