MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C95400 Bronze

2095 aluminum belongs to the aluminum alloys classification, while C95400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 8.5
8.1 to 16
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 700
600 to 710
Tensile Strength: Yield (Proof), MPa 610
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 210
230
Melting Completion (Liquidus), °C 660
1040
Melting Onset (Solidus), °C 540
1030
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 130
59
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
27
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
3.2
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1470
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
250 to 560
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 65
20 to 24
Strength to Weight: Bending, points 59
19 to 22
Thermal Diffusivity, mm2/s 49
16
Thermal Shock Resistance, points 31
21 to 25

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
10 to 11.5
Copper (Cu), % 3.9 to 4.6
83 to 87
Iron (Fe), % 0 to 0.15
3.0 to 5.0
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.5
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.5