MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C99300 Copper

2095 aluminum belongs to the aluminum alloys classification, while C99300 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 8.5
2.0
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 700
660
Tensile Strength: Yield (Proof), MPa 610
380

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 210
250
Melting Completion (Liquidus), °C 660
1080
Melting Onset (Solidus), °C 540
1070
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
4.5
Embodied Energy, MJ/kg 160
70
Embodied Water, L/kg 1470
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
11
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
590
Stiffness to Weight: Axial, points 13
8.3
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 65
22
Strength to Weight: Bending, points 59
20
Thermal Diffusivity, mm2/s 49
12
Thermal Shock Resistance, points 31
22

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
10.7 to 11.5
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 3.9 to 4.6
68.6 to 74.4
Iron (Fe), % 0 to 0.15
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0
13.5 to 16.5
Silicon (Si), % 0 to 0.12
0 to 0.020
Silver (Ag), % 0.25 to 0.6
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.3