MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. S17400 Stainless Steel

2095 aluminum belongs to the aluminum alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
11 to 21
Fatigue Strength, MPa 200
380 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 410
570 to 830
Tensile Strength: Ultimate (UTS), MPa 700
910 to 1390
Tensile Strength: Yield (Proof), MPa 610
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
850
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1470
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 65
32 to 49
Strength to Weight: Bending, points 59
27 to 35
Thermal Diffusivity, mm2/s 49
4.5
Thermal Shock Resistance, points 31
30 to 46

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 3.9 to 4.6
3.0 to 5.0
Iron (Fe), % 0 to 0.15
70.4 to 78.9
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0