MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. S20161 Stainless Steel

2095 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
46
Fatigue Strength, MPa 200
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 410
690
Tensile Strength: Ultimate (UTS), MPa 700
980
Tensile Strength: Yield (Proof), MPa 610
390

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 210
870
Melting Completion (Liquidus), °C 660
1380
Melting Onset (Solidus), °C 540
1330
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1470
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
360
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 65
36
Strength to Weight: Bending, points 59
29
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 31
22

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
65.6 to 73.9
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
3.0 to 4.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0