MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. S24000 Stainless Steel

2095 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.5
39
Fatigue Strength, MPa 200
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 410
530
Tensile Strength: Ultimate (UTS), MPa 700
770
Tensile Strength: Yield (Proof), MPa 610
430

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1470
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
260
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 65
28
Strength to Weight: Bending, points 59
24
Thermal Shock Resistance, points 31
16

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
61.5 to 69
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.12
0 to 0.75
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0