MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. 324.0 Aluminum

Both 2117 aluminum and 324.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 26
3.0 to 4.0
Fatigue Strength, MPa 95
77 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300
210 to 310
Tensile Strength: Yield (Proof), MPa 170
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
34
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 190
85 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
52
Strength to Weight: Axial, points 28
22 to 32
Strength to Weight: Bending, points 33
29 to 38
Thermal Diffusivity, mm2/s 59
62
Thermal Shock Resistance, points 12
9.7 to 14

Alloy Composition

Aluminum (Al), % 91 to 97.6
87.3 to 92.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 4.5
0.4 to 0.6
Iron (Fe), % 0 to 0.7
0 to 1.2
Magnesium (Mg), % 0.2 to 1.0
0.4 to 0.7
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.2 to 0.8
7.0 to 8.0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 1.0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.2