MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. 6023 Aluminum

Both 2117 aluminum and 6023 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 26
11
Fatigue Strength, MPa 95
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 200
210 to 220
Tensile Strength: Ultimate (UTS), MPa 300
360
Tensile Strength: Yield (Proof), MPa 170
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 550
580
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 190
670 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
49
Strength to Weight: Axial, points 28
35 to 36
Strength to Weight: Bending, points 33
40
Thermal Diffusivity, mm2/s 59
67
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91 to 97.6
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 4.5
0.2 to 0.5
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0.2 to 1.0
0.4 to 0.9
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.6
Silicon (Si), % 0.2 to 0.8
0.6 to 1.4
Tin (Sn), % 0
0.6 to 1.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15