MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. ACI-ASTM CB30 Steel

2117 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
210
Elastic (Young's, Tensile) Modulus, GPa 71
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 300
500
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 220
940
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 33
18
Thermal Diffusivity, mm2/s 59
5.6
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 2.2 to 4.5
0 to 1.2
Iron (Fe), % 0 to 0.7
72.9 to 82
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0