MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. AISI 201 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200 to 440
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 26
4.6 to 51
Fatigue Strength, MPa 95
280 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 200
450 to 840
Tensile Strength: Ultimate (UTS), MPa 300
650 to 1450
Tensile Strength: Yield (Proof), MPa 170
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 190
230 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
23 to 52
Strength to Weight: Bending, points 33
22 to 37
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 12
14 to 32

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
67.5 to 75
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0