MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. EN 1.4378 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while EN 1.4378 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is EN 1.4378 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190 to 340
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 26
14 to 34
Fatigue Strength, MPa 95
340 to 550
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 200
510 to 680
Tensile Strength: Ultimate (UTS), MPa 300
760 to 1130
Tensile Strength: Yield (Proof), MPa 170
430 to 970

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 190
470 to 2370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
28 to 41
Strength to Weight: Bending, points 33
24 to 31
Thermal Shock Resistance, points 12
16 to 23

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
61.2 to 69
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0