MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. EN 1.4980 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
17
Fatigue Strength, MPa 95
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Shear Strength, MPa 200
630
Tensile Strength: Ultimate (UTS), MPa 300
1030
Tensile Strength: Yield (Proof), MPa 170
680

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
150
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
36
Strength to Weight: Bending, points 33
28
Thermal Diffusivity, mm2/s 59
3.5
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 91 to 97.6
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
13.5 to 16
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
49.2 to 58.5
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0