MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. EN 1.5450 Steel

2117 aluminum belongs to the aluminum alloys classification, while EN 1.5450 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is EN 1.5450 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
19
Fatigue Strength, MPa 95
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 200
380
Tensile Strength: Ultimate (UTS), MPa 300
620
Tensile Strength: Yield (Proof), MPa 170
460

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 91 to 97.6
0 to 0.060
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0 to 0.1
0 to 0.2
Copper (Cu), % 2.2 to 4.5
0 to 0.3
Iron (Fe), % 0 to 0.7
97.6 to 98.8
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0.6 to 0.8
Molybdenum (Mo), % 0
0.4 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0.1 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.060
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0