MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. SAE-AISI 1552 Steel

2117 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1552 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is SAE-AISI 1552 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
11 to 14
Fatigue Strength, MPa 95
290 to 400
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 200
460 to 510
Tensile Strength: Ultimate (UTS), MPa 300
760 to 840
Tensile Strength: Yield (Proof), MPa 170
460 to 650

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
81 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 190
560 to 1130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
27 to 30
Strength to Weight: Bending, points 33
24 to 25
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 12
26 to 29

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0.47 to 0.55
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
97.9 to 98.3
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0