MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. SAE-AISI 52100 Steel

2117 aluminum belongs to the aluminum alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
10 to 20
Fatigue Strength, MPa 95
250 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 200
370 to 420
Tensile Strength: Ultimate (UTS), MPa 300
590 to 2010
Tensile Strength: Yield (Proof), MPa 170
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 24
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 190
350 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
21 to 72
Strength to Weight: Bending, points 33
20 to 45
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 12
19 to 61

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.1
1.4 to 1.6
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
96.5 to 97.3
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0.25 to 0.45
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0.15 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0