MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. C94300 Bronze

2117 aluminum belongs to the aluminum alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
87
Elongation at Break, % 26
9.7
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 27
32
Tensile Strength: Ultimate (UTS), MPa 300
180
Tensile Strength: Yield (Proof), MPa 170
120

Thermal Properties

Latent Heat of Fusion, J/g 400
150
Maximum Temperature: Mechanical, °C 220
110
Melting Completion (Liquidus), °C 650
820
Melting Onset (Solidus), °C 550
760
Specific Heat Capacity, J/kg-K 880
320
Thermal Conductivity, W/m-K 150
63
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 3.0
9.3
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
15
Resilience: Unit (Modulus of Resilience), kJ/m3 190
77
Stiffness to Weight: Axial, points 13
5.2
Stiffness to Weight: Bending, points 47
16
Strength to Weight: Axial, points 28
5.2
Strength to Weight: Bending, points 33
7.4
Thermal Diffusivity, mm2/s 59
21
Thermal Shock Resistance, points 12
7.1

Alloy Composition

Aluminum (Al), % 91 to 97.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 4.5
67 to 72
Iron (Fe), % 0 to 0.7
0 to 0.15
Lead (Pb), % 0
23 to 27
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.2 to 0.8
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0 to 0.8
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 1.0