MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S30600 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
45
Fatigue Strength, MPa 95
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 200
430
Tensile Strength: Ultimate (UTS), MPa 300
610
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 220
950
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
220
Resilience: Unit (Modulus of Resilience), kJ/m3 190
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 33
21
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0 to 0.1
17 to 18.5
Copper (Cu), % 2.2 to 4.5
0 to 0.5
Iron (Fe), % 0 to 0.7
58.9 to 65.3
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.8
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0