MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S31277 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 26
45
Fatigue Strength, MPa 95
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 200
600
Tensile Strength: Ultimate (UTS), MPa 300
860
Tensile Strength: Yield (Proof), MPa 170
410

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.2
6.7
Embodied Energy, MJ/kg 150
90
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
320
Resilience: Unit (Modulus of Resilience), kJ/m3 190
410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 28
29
Strength to Weight: Bending, points 33
25
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
20.5 to 23
Copper (Cu), % 2.2 to 4.5
0.5 to 1.5
Iron (Fe), % 0 to 0.7
35.5 to 46.2
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0
26 to 28
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0