MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S40910 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S40910 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
160
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 26
23
Fatigue Strength, MPa 95
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 200
270
Tensile Strength: Ultimate (UTS), MPa 300
430
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 220
710
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
80
Resilience: Unit (Modulus of Resilience), kJ/m3 190
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 33
16
Thermal Diffusivity, mm2/s 59
6.9
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
10.5 to 11.7
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
85 to 89.5
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0