MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S44626 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 26
23
Fatigue Strength, MPa 95
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 200
340
Tensile Strength: Ultimate (UTS), MPa 300
540
Tensile Strength: Yield (Proof), MPa 170
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 33
19
Thermal Diffusivity, mm2/s 59
4.6
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
25 to 27
Copper (Cu), % 2.2 to 4.5
0 to 0.2
Iron (Fe), % 0 to 0.7
68.1 to 74.1
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0.2 to 1.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0