MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S44635 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
240
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 26
23
Fatigue Strength, MPa 95
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 200
450
Tensile Strength: Ultimate (UTS), MPa 300
710
Tensile Strength: Yield (Proof), MPa 170
580

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
150
Resilience: Unit (Modulus of Resilience), kJ/m3 190
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 59
4.4
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.1
24.5 to 26
Copper (Cu), % 2.2 to 4.5
0
Iron (Fe), % 0 to 0.7
61.5 to 68.5
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.2 to 0.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0