MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. S44700 Stainless Steel

2117 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 26
23
Fatigue Strength, MPa 95
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Shear Strength, MPa 200
380
Tensile Strength: Ultimate (UTS), MPa 300
600
Tensile Strength: Yield (Proof), MPa 170
450

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 33
20
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
28 to 30
Copper (Cu), % 2.2 to 4.5
0 to 0.15
Iron (Fe), % 0 to 0.7
64.9 to 68.5
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0