MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. 206.0 Aluminum

Both 2124 aluminum and 206.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 5.7
8.4 to 12
Fatigue Strength, MPa 130
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 280
260
Tensile Strength: Ultimate (UTS), MPa 490
330 to 440
Tensile Strength: Yield (Proof), MPa 430
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 500
570
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 45
30 to 40
Strength to Weight: Bending, points 46
35 to 42
Thermal Diffusivity, mm2/s 58
46
Thermal Shock Resistance, points 21
17 to 23

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
93.3 to 95.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
4.2 to 5.0
Iron (Fe), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 1.2 to 1.8
0.15 to 0.35
Manganese (Mn), % 0.3 to 0.9
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.1
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15