MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. 4115 Aluminum

Both 2124 aluminum and 4115 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 5.7
1.1 to 11
Fatigue Strength, MPa 130
39 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 280
71 to 130
Tensile Strength: Ultimate (UTS), MPa 490
120 to 220
Tensile Strength: Yield (Proof), MPa 430
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 500
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
41
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
11 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 45
12 to 23
Strength to Weight: Bending, points 46
20 to 30
Thermal Diffusivity, mm2/s 58
66
Thermal Shock Resistance, points 21
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
94.6 to 97.4
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0.1 to 0.5
Iron (Fe), % 0 to 0.3
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0.1 to 0.5
Manganese (Mn), % 0.3 to 0.9
0.6 to 1.2
Silicon (Si), % 0 to 0.2
1.8 to 2.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15