MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. 852.0 Aluminum

Both 2124 aluminum and 852.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 5.7
3.4
Fatigue Strength, MPa 130
73
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 280
130
Tensile Strength: Ultimate (UTS), MPa 490
200
Tensile Strength: Yield (Proof), MPa 430
150

Thermal Properties

Latent Heat of Fusion, J/g 390
370
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 500
210
Specific Heat Capacity, J/kg-K 880
840
Thermal Conductivity, W/m-K 150
180
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
45
Electrical Conductivity: Equal Weight (Specific), % IACS 110
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 3.0
3.2
Embodied Carbon, kg CO2/kg material 8.2
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
6.2
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
160
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 46
43
Strength to Weight: Axial, points 45
17
Strength to Weight: Bending, points 46
24
Thermal Diffusivity, mm2/s 58
65
Thermal Shock Resistance, points 21
8.7

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
86.6 to 91.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
1.7 to 2.3
Iron (Fe), % 0 to 0.3
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0.6 to 0.9
Manganese (Mn), % 0.3 to 0.9
0 to 0.1
Nickel (Ni), % 0
0.9 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.4
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.3