MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. ACI-ASTM CA6N Steel

2124 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7
17
Fatigue Strength, MPa 130
640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 490
1080
Tensile Strength: Yield (Proof), MPa 430
1060

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
23
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
2900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
38
Strength to Weight: Bending, points 46
30
Thermal Diffusivity, mm2/s 58
6.1
Thermal Shock Resistance, points 21
40

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
10.5 to 12.5
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.3
77.9 to 83.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0