MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. ASTM A387 Grade 5 Steel

2124 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7
20 to 21
Fatigue Strength, MPa 130
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 280
310 to 380
Tensile Strength: Ultimate (UTS), MPa 490
500 to 600
Tensile Strength: Yield (Proof), MPa 430
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 190
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 500
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.3
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1150
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
140 to 320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
18 to 21
Strength to Weight: Bending, points 46
18 to 20
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 21
14 to 17

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
4.0 to 6.0
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.3
92.1 to 95.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0