MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. AWS E317

2124 aluminum belongs to the aluminum alloys classification, while AWS E317 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is AWS E317.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 490
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.3
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1150
170

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
22
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 58
3.9
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.8 to 4.9
0 to 0.75
Iron (Fe), % 0 to 0.3
56.6 to 66.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.5 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
12 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0