MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. AWS E80C-B6

2124 aluminum belongs to the aluminum alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 490
630
Tensile Strength: Yield (Proof), MPa 430
530

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.7
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1150
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
730
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
22
Strength to Weight: Bending, points 46
21
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
4.5 to 6.0
Copper (Cu), % 3.8 to 4.9
0 to 0.35
Iron (Fe), % 0 to 0.3
90.1 to 94.4
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5