MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. EN 1.4005 Stainless Steel

2124 aluminum belongs to the aluminum alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7
13 to 21
Fatigue Strength, MPa 130
240 to 290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 280
390 to 450
Tensile Strength: Ultimate (UTS), MPa 490
630 to 750
Tensile Strength: Yield (Proof), MPa 430
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
350 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
23 to 27
Strength to Weight: Bending, points 46
21 to 24
Thermal Diffusivity, mm2/s 58
8.1
Thermal Shock Resistance, points 21
23 to 27

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.3
82.4 to 87.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0