MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. EN 1.4852 Stainless Steel

2124 aluminum belongs to the aluminum alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7
4.6
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 490
490
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 500
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.9
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
19
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 45
17
Strength to Weight: Bending, points 46
18
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 21
11

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.1
24 to 27
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.3
29.6 to 40.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0