MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. EN 1.4859 Stainless Steel

2124 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7
23
Fatigue Strength, MPa 130
140
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 490
490
Tensile Strength: Yield (Proof), MPa 430
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 500
1360
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.2
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
91
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 45
17
Strength to Weight: Bending, points 46
17
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 21
11

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
19 to 21
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.3
40.3 to 49
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0