MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. EN AC-21000 Aluminum

Both 2124 aluminum and EN AC-21000 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 5.7
6.7
Fatigue Strength, MPa 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 490
340
Tensile Strength: Yield (Proof), MPa 430
240

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 500
550
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
21
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 45
32
Strength to Weight: Bending, points 46
36
Thermal Diffusivity, mm2/s 58
49
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
93.4 to 95.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
4.2 to 5.0
Iron (Fe), % 0 to 0.3
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 1.8
0.15 to 0.35
Manganese (Mn), % 0.3 to 0.9
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.1