MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. CC332G Bronze

2124 aluminum belongs to the aluminum alloys classification, while CC332G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 5.7
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 490
620
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 500
1010
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
270
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 45
21
Strength to Weight: Bending, points 46
19
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
8.5 to 10.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
80 to 86
Iron (Fe), % 0 to 0.3
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.2 to 1.8
0 to 0.050
Manganese (Mn), % 0.3 to 0.9
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0