MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. C27400 Brass

2124 aluminum belongs to the aluminum alloys classification, while C27400 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is C27400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 490
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 500
870
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1150
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 45
13 to 23
Strength to Weight: Bending, points 46
14 to 21
Thermal Diffusivity, mm2/s 58
37
Thermal Shock Resistance, points 21
12 to 22

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
61 to 64
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
35.6 to 39
Residuals, % 0
0 to 0.3