MakeItFrom.com
Menu (ESC)

2124 Aluminum vs. C79600 Nickel Silver

2124 aluminum belongs to the aluminum alloys classification, while C79600 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2124 aluminum and the bottom bar is C79600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7
15
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
43
Shear Strength, MPa 280
290
Tensile Strength: Ultimate (UTS), MPa 490
480
Tensile Strength: Yield (Proof), MPa 430
300

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 500
880
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
36
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
63
Resilience: Unit (Modulus of Resilience), kJ/m3 1290
400
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 45
17
Strength to Weight: Bending, points 46
17
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 91.3 to 94.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
43.5 to 46.5
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0
0.8 to 1.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
1.5 to 2.5
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
38.3 to 45.2
Residuals, % 0
0 to 0.5