MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. 1230A Aluminum

Both 2195 aluminum and 1230A aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is 1230A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 9.3
4.5 to 34
Fatigue Strength, MPa 190
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 350
59 to 99
Tensile Strength: Ultimate (UTS), MPa 590
89 to 170
Tensile Strength: Yield (Proof), MPa 560
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
60
Electrical Conductivity: Equal Weight (Specific), % IACS 100
200

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1470
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
5.9 to 150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 55
9.1 to 17
Strength to Weight: Bending, points 53
16 to 25
Thermal Diffusivity, mm2/s 49
93
Thermal Shock Resistance, points 26
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
99.3 to 100
Copper (Cu), % 3.7 to 4.3
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.7
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0 to 0.050
Manganese (Mn), % 0 to 0.25
0 to 0.050
Silicon (Si), % 0 to 0.12
0 to 0.7
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.050
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0