MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. AISI 304N Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while AISI 304N stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is AISI 304N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
9.1 to 45
Fatigue Strength, MPa 190
220 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 350
420 to 700
Tensile Strength: Ultimate (UTS), MPa 590
620 to 1180
Tensile Strength: Yield (Proof), MPa 560
270 to 850

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.0
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1470
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
98 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
180 to 1830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
22 to 42
Strength to Weight: Bending, points 53
21 to 32
Thermal Diffusivity, mm2/s 49
4.2
Thermal Shock Resistance, points 26
14 to 26

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
66.4 to 73.9
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.12
0 to 0.75
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0