MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. AWS E309Mo

2195 aluminum belongs to the aluminum alloys classification, while AWS E309Mo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is AWS E309Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 590
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.6
4.2
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 1470
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
22
Strength to Weight: Bending, points 53
20
Thermal Diffusivity, mm2/s 49
3.9
Thermal Shock Resistance, points 26
15

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 3.7 to 4.3
0 to 0.75
Iron (Fe), % 0 to 0.15
53.6 to 63.5
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
12 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0