MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.1203 Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.1203 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
12 to 15
Fatigue Strength, MPa 190
210 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 350
420 to 480
Tensile Strength: Ultimate (UTS), MPa 590
690 to 780
Tensile Strength: Yield (Proof), MPa 560
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.1
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1470
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
310 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
25 to 28
Strength to Weight: Bending, points 53
22 to 24
Thermal Diffusivity, mm2/s 49
13
Thermal Shock Resistance, points 26
22 to 25

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
97.1 to 98.9
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.12
0 to 0.4
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0