MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.4418 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
16 to 20
Fatigue Strength, MPa 190
350 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 350
530 to 620
Tensile Strength: Ultimate (UTS), MPa 590
860 to 1000
Tensile Strength: Yield (Proof), MPa 560
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
870
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1470
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
730 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
31 to 36
Strength to Weight: Bending, points 53
26 to 28
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 26
31 to 36

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
73.2 to 80.2
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 0.7
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0