MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.4482 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
34
Fatigue Strength, MPa 190
420 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 350
510 to 530
Tensile Strength: Ultimate (UTS), MPa 590
770 to 800
Tensile Strength: Yield (Proof), MPa 560
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 1470
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
28 to 29
Strength to Weight: Bending, points 53
24 to 25
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 26
21 to 22

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 3.7 to 4.3
0 to 1.0
Iron (Fe), % 0 to 0.15
66.1 to 74.9
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0