MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.4874 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.3
6.7
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 590
480
Tensile Strength: Yield (Proof), MPa 560
360

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.6
7.6
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1470
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
29
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
16
Strength to Weight: Bending, points 53
16
Thermal Diffusivity, mm2/s 49
3.3
Thermal Shock Resistance, points 26
11

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
23 to 38.9
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0