MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.5501 Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
12 to 17
Fatigue Strength, MPa 190
180 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 350
270 to 310
Tensile Strength: Ultimate (UTS), MPa 590
390 to 510
Tensile Strength: Yield (Proof), MPa 560
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1470
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
190 to 460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
14 to 18
Strength to Weight: Bending, points 53
15 to 18
Thermal Diffusivity, mm2/s 49
14
Thermal Shock Resistance, points 26
11 to 15

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.13 to 0.16
Copper (Cu), % 3.7 to 4.3
0 to 0.25
Iron (Fe), % 0 to 0.15
98.4 to 99.269
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.12
0 to 0.3
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0