MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 1.7709 Steel

2195 aluminum belongs to the aluminum alloys classification, while EN 1.7709 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 1.7709 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 590
650 to 780

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
440
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
33
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.3
Embodied Energy, MJ/kg 160
32
Embodied Water, L/kg 1470
56

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
23 to 27
Strength to Weight: Bending, points 53
21 to 24
Thermal Diffusivity, mm2/s 49
8.9
Thermal Shock Resistance, points 26
22 to 26

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0 to 0.030
Carbon (C), % 0
0.17 to 0.25
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
95.2 to 97.5
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.4 to 0.8
Molybdenum (Mo), % 0
0.55 to 0.8
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.12
0 to 0.4
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0